Cognitive Ethology

Cognitive ethology has been defined as the study of the mental experiences of animals, particularly in their natural environment, in the course of their daily lives. Data are derived from the observation of naturally occurring behavior as well as from experimental investigations conducted in the laboratory and in the field. By emphasizing naturally occurring behaviors, cognitive ethologists recognize that the problems faced in finding food and mates, rearing young, avoiding predators, creating shelters, and communicating and engaging in social interactions may require considerable cognitive skills, possibly more complex than and different from those usually examined in traditional psycho-logical laboratory studies. The term "mental experiences" acknowledges that the mental capabilities of animals, in addition to unconscious mental processes, may also include conscious states. This affords the animals sensory experiences, pleasure and pain, the use of mental imagery, and involves at least simple intentional states such as wanting and believing.

Thus, broadly described, the subject of research in cognitive ethology includes any mental experiences and processes, including studies of habituation and sensitization, learning and memory, problem solving, perception, decision making, natural communication, and the artificial languages taught to apes, dolphins, and parrots (reviewed by Ristau and Robbins 1982; Ristau 1997). More narrowly defined, cognitive ethology emphasizes interest in possibly conscious animal mental experiences, particularly as occurring in communication and other social interactions and studies of intention. The field can also be construed as an ethological approach to cognition.

Although the field of cognitive ethology has roots in COMPARATIVE PSYCHOLOGY, ETHOLOGY, and studies of animal learning and memory, it traces its birth to the publication in 1976 of The Question of Animal Awareness by the biologist Donald Griffin (see also Griffin 1992).

What is the rationale for the field of cognitive ethology? As conceived by Griffin (1976), there are several reasons for considering that animals may think and be aware: (i) Argument from evolutionary continuity -- animals share so many similarities in structure, process, and behavior with humans, why should we not expect them to share mental experience as well? (ii) Neurophysiological evidence -- as far as can be determined, nonhuman animals share many neuroanatomical structures, including kinds of neurotransmitters, neurons, synaptic connections, and nerve impulses. We agree that humans are conscious, but, as yet, know of no special structure or process type that is responsible for consciousness or awareness, nor of any neurophysiological process that is uniquely human. (iii) Behavioral complexity and flexibility, particularly in the face of obstacles to the achievement of a goal, at least suggest that the organism may be thinking about alternative ways to behave. (iv) Communication as a window on animal minds -- an animal's attention and response to the species' communicative signals -- may suggest something of the mental experience and likely behaviors of the communicating organism.

Probably the most significant methodological characteristics of research in cognitive ethology is approximating important aspects of the natural conditions of the species under investigation and making very fine-grained analyses of behavior, usually necessitating videotaped data collection. Many experiments are conducted in the natural environment: (i) Ristau's (1991) studies of piping plovers' use of "injury feigning" in staged encounters with intruders. (ii) Observations of the social behavior of freely interacting organisms, for example Bekoff's (1995a) study of metacommunicative signals in play between two pet dogs. The dogs tended to use signals indicating "this is play" to initiate play bouts and after rough encounters possibly misinterpretable as aggressive (see SOCIAL PLAY BEHAVIOR). (iii) Structurally altered environmental space, for example Bekoff's (1995b) study of vigilance behavior as influenced by the geometry of birds' spatial arrangement at a feeder. Birds spent less time being vigilant for predators when perched in a circle and easily able to determine whether others were vigilant than when they were standing along a line so that such visibility was impossible. (iv) Acoustic playback of recorded species-typic communication signals, for example Seyfarth, Cheney, and Marler's (1980) playbacks to vervet monkeys. The vervets apparently can signal semantic information, not simply emotional states. The monkeys have distinct acoustic signals for a ground predator such as a leopard, a specific aerial predator, the martial eagle, and for snakes (see SOCIAL COGNITION IN ANIMALS).

Cognitive ethology studies differ in interpretation from more traditional approaches. Many ethologists and comparative psychologists have studied foraging behavior, but the cognitive ethologist is interested in different aspects of the data and draws different conclusions. The traditional ethologist might produce an ethogram of an individual animal's or species' behavior, namely a time budget of the various activities in which the animal(s) engage. A comparative psychologist might study the animals under laboratory conditions with strict stimulus control, striving to determine the stimuli apparently controlling the organism's behavior. In these various situations, the cognitive ethologists would be particularly interested in the cognitive capacities revealed, particularly as they might relate to problems encountered by the organism in its natural environment.

Cognitive ethological studies sometimes differ from other research in their scientific paradigm. A typical learning paradigm as used by experimental psychologists might test an animal's discriminative abilities and specificity, duration and stimulus control of memories, but the procedures rely on standard protocols with many trials. Learning over many trials is not the same capacity as intelligence, though it is necessary for intelligence. Intelligent behavior, of particular interest to cognitive ethologists, is most likely to be revealed when an organism encounters a novel problem, particularly one for which the organism is not specifically prepared by evolution. But one or few occurrences, at least in the past, have been pejoratively termed anecdotal and excluded from the scientific literature. Science can progress by including such observations, particularly from well-trained scientists who, with years of study, often have unique opportunities to observe animals in unusual circumstances. If possible, one attempts to design experiments that replicate the rare occurrence.

Since an organism's most interesting actions may not be predictable by the researcher, many investigations in cognitive ethology cannot proceed with predetermined checklists of behavior. Likewise the significance of given behaviors may not be apparent at the time of observation, but may later be understood in terms of a broader context, often extending over days, weeks, or years. These possibilities again require extensive use of video and careful notation of details. For example, a parent piping plover who hears an acoustic playback of a chick's screech and then searches unsuccessfully for the chick, sometimes next searches an area where a playback had been conducted days earlier (Ristau, pers. obs.).

A cognitive ethological approach is illustrated in experimental field studies of piping plovers' injury feigning or broken wing display (BWD), a behavior performed when an intruder/predator approaches the nest or young (Ristau 1991). The hypothesis to be evaluated was: The piping plover wants to lead the predator/intruder away from the nest/young. Alternatively, the use of BWDs might be viewed as the result of confusion or conflicting motivations or as a fixed action pattern with no voluntary control. Theories of how one might experimentally assess the plover's purpose drew inspiration from work such as that of the psychologist Tolman (1932), the philosopher Dennett (1983), and artificial intelligence researcher Boden (1983). Videotaped experiments were conducted on beaches where plovers nested. Human intruders approached the nest or young in directions unpredictable to the birds, so as to approximate the behavior of an actual predator. Questions asked were the following:

  1. Is the bird's behavior appropriate to achieve the presumed goal? Specifically, does the plover move in a direction that would cause an intruder who was following to be further away from the nest/young? Answer: Yes. Furthermore, the plover displayed a behavior that might be expected if the bird were trying to attract the intruder's attention and thus was selective about where it displayed. The bird positioned itself before displaying, often even flying to a new location. Such new locations were closer to the intruder and usually closer to the center of the intruder's visual field/direction of movement as well.
  2. Does a displaying bird monitor the intruder's behavior? Though difficult to determine exactly what the plover was monitoring, often in the midst of a display, the bird turned its head sharply back over its shoulder, eye toward the intruder.
  3. Does the bird modify its behavior if its goal is not being achieved, specifically if the intruder does not follow the displaying bird? Again, yes. The plover reapproached the intruder or increased the intensity of its display if the intruder was not following, but did not do so if the intruder kept following the display.

Other experiments determined that the plover was sensitive to the direction of eye gaze of an intruder either toward or away from its nest. In others, the plover learned very rapidly to discriminate which intruders were dangerous, i.e., had approached closely to its nest, and which were not, those that had simply walked past the nest, rather far away.

The field of cognitive ethology has engendered considerable controversy (for example, see Mason 1976). Some experimental and comparative psychologists dissociate themselves from the endeavor and avoid use of mentalistic phrases such as "the organism wants to do X." However, in designing and interpreting the research, experimental psychologists have at least implicit assumptions about the needs and intentions of their animal subjects. The lab rat must want the food pellet and thus performs the experimenter's task to get it. In a test of CER (conditioned emotional responding), the rat inhibits bar pressing in the presence of a stimulus associated with shock. We are interested in the results only because we assume the rat is experiencing an emotional state related to human fear. Even the description of an organism's action contains implied attributions of intentions. Insofar as a rat is described as reaching for a pellet or walking to the water, a goal or motive is implied. To avoid the for or to makes the description a mere delineation of changes of position in space and loses the significance of the event. In similar vein, the experiments that studiously avoid mentalistic phrases, upon closer examination, entail assumptions about animal states and intentions.

One can only hope that the common concerns of the related disciplines will be recognized by researchers. It is probable that philosophers would find useful, directive constraints on their thinking from the data on animal cognition, and that the psychologists and biologists would better appreciate the contributions of philosophers that can help clarify concepts and reveal conceptual complexities in an experiment.

See also

Additional links

-- Carolyn A. Ristau

References

Bekoff, M. (1995a). Play signals as punctuation: the structure of social play in canids. Behaviour 132:419-429.

Bekoff, M. (1995b). Vigilance, flock size, and flock geometry: information gathering by western evening grosbeaks (Aves, fringillidae). Ethology 99:150-161.

Bekoff, M., and Jamieson, D., Ed. (1996). Readings in Animal Cognition. Cambridge, MA: MIT Press.

Boden, M. (1983). Artificial intelligence and animal psychology. New Ideas in Psychology 1:11-33.

Dennett, D. C. (1983). Intentional systems in cognitive ethology: the panglossian paradigm defended. Behavioral and Brain Sciences 6:343-390.

Dennett, D. C. (1996). Kinds of Minds: Towards an Understanding of Consciousness. New York: Basic Books.

Griffin, D. R. (1976). The Question of Animal Awareness: Evolutionary Continuity of Mental Experience. New York: Rockefeller University Press.

Griffin, D. R. (1992). Animal Minds. Chicago: University of Chicago Press.

Mason, W. (1976). Windows on other minds. Book review of The Question of Animal Awareness by Donald R. Griffin. Science 194:930-931.

Ristau, C. A. (1991). Aspects of the cognitive ethology of an injury-feigning bird, the piping plover. In Ristau, C. A., Ed., Cognitive Ethology: The Minds of Other Animals. Hillside, NJ: Erlbaum, pp. 91-126.

Seyfarth, R. M., D. L. Cheney, and P. Marler. (1980). Vervet monkey alarm calls: evidence for predator classification and semantic communication. Animal Behaviour 28:1070-1094.

Tolman, E. C. (1932). Purposive Behavior in Animals and Men. New York: Appleton-Century.

Further Readings

Allen, C., and M. Bekoff. (1997). Species of Mind: The Philosophy and Biology of Cognitive Ethology. Cambridge, MA: MIT Press.

Beer, C. (1992). Conceptual Issues in Cognitive Ethology. Advances in the Study of Behavior 21:69-109.

Jamieson, D., and M. Bekoff. (1993). On aims and methods of cognitive ethology. Philosophy of Science Association 2:110-124.

Lloyd, D. (1989). Small Minds. Cambridge, MA: MIT Press.

Ristau, C. A. (1997). Animal language and cognition research. In A. Lock and C. R. Peters, Eds., The Handbook of Human Symbolic Evolution. London: Oxford University Press, pp. 644-685.

Ristau, C. A., and D. Robbins. (1982). Language in the great apes: a critical review. In J. S. Rosenblatt, R. A. Hinde, C. Beer, and M.-C. Busnel, Eds., Advances in the Study of Behavior, vol. 12. New York: Academic Press, pp. 142-255.